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Numerous studies and anecdotes demonstrate the “wisdom of the crowd,” the surprising
accuracy of a group’s aggregated judgments. Less is known, however, about the generality
of crowd wisdom. For example, are crowds wise even if their members have systematic
judgmental biases, or can influence each other before members render their judgments? If
so, are there situations in which we can expect a crowd to be less accurate than skilled
individuals? We provide a precise but general definition of crowd wisdom: A crowd is wise
if a linear aggregate, for example a mean, of its members’ judgments is closer to the target
value than a randomly, but not necessarily uniformly, sampled member of the crowd.
Building on this definition, we develop a theoretical framework for examining, a priori,
when and to what degree a crowd will be wise. We systematically investigate the boundary
conditions for crowd wisdom within this framework and determine conditions under which
the accuracy advantage for crowds is maximized. Our results demonstrate that crowd
wisdom is highly robust: Even if judgments are biased and correlated, one would need to
nearly deterministically select only a highly skilled judge before an individual’s judgment
could be expected to be more accurate than a simple averaging of the crowd. Our results
also provide an accuracy rationale behind the need for diversity of judgments among group
members. Contrary to folk explanations of crowd wisdom which hold that judgments
should ideally be independent so that errors cancel out, we find that crowd wisdom is
maximized when judgments systematically differ as much as possible. We reanalyze data
from 2 published studies that confirm our theoretical results.
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Galton (1907) provided perhaps the first doc-
umentation of the “Wisdom of the Crowd” (Sur-
owiecki, 2004) or “swarm intelligence”

(Krause, Ruxton, & Krause, 2009) effect when
he analyzed 787 individuals’ guesses of the
weight of a slaughtered and dressed ox. The
individuals were entered in a contest at a livestock
show for which they were charged a small fee,
thus motivating them to guess well. Because they
competed for prizes, their discussions of the
guesses were likely limited, resulting in a series of
individual judgments uninfluenced by the guesses
of others. Some competitors were highly skilled in
this judgment, such as butchers and farmers, while
others were novices. The guesses, which Galton
called “unbiased by passion and oratory,” were
nearly symmetric about the correct answer of
1,198 pounds, and the wisdom of the crowd, as
captured by the median guess of 1,207 pounds,
was accurate within 0.8%.
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It has since been well established that aggre-
gating judgments or predictions across individ-
uals can be surprisingly accurate in a variety of
domains, including prediction markets, political
polls, game shows, and forecasting (see Sur-
owiecki, 2004). Under Galton’s conditions of
individuals having largely unbiased and inde-
pendent judgments, the aggregated judgment of
a group of individuals is uncontroversially bet-
ter, on average, than the individual judgments
themselves (e.g., Armstrong, 2001; Clemen,
1989; Galton, 1907; Surowiecki, 2004; Win-
kler, 1971). The boundary conditions of crowd
wisdom, however, are not as well understood.
For example, when group members are allowed
access to other members’ predictions, as op-
posed to making them independently, their pre-
dictions become more positively correlated, and
the crowd’s performance can diminish (Lorenz,
Rauhut, Schweitzer, & Helbing, 2011). In the
context of handicapping sports results, individ-
uals have been found to make systematically
biased predictions, so that their aggregated
judgments may not be wise (Simmons, Nelson,
Galak, & Frederick, 2011). How robust is
crowd wisdom to factors such as nonindepen-
dence and bias of crowd members’ judgments?
If the conditions for crowd wisdom are less than
ideal, is it better to aggregate judgments or, for
instance, rely on a skilled individual judge?
Would it be better to add a highly skilled crowd
member or a less skilled one who makes sys-
tematically different predictions than other
members, increasing diversity?

We provide a simple, precise definition of the
wisdom-of-the-crowd effect and a systematic
way to examine its boundary conditions. We
define a crowd as wise if a linear aggregate of
its members’ judgments of a criterion value has
less expected squared error than the judgments
of an individual sampled randomly, but not nec-
essarily uniformly, from the crowd. Previous
definitions of the wisdom of the crowd effect
have largely focused on comparing the crowd’s
accuracy with that of the average individual
member (Larrick, Mannes, & Soll, 2012). Our
definition generalizes prior approaches in a cou-
ple of ways. First, we consider crowds created
by any linear aggregate, not just simple averag-
ing. Second, our definition allows the compari-
son of the crowd to an individual selected ac-
cording to a distribution that could reflect past
individual performance; for example, their skill,

or other attributes. On the basis of our defini-
tion, we develop a framework for analyzing
crowd wisdom that includes various aggrega-
tion and sampling rules. These rules include
both weighting the aggregate and sampling the
individual according to skill, where skill is op-
erationalized as predictive validity; that is, the
correlation between a judge’s prediction and the
criterion. Although the amount of the crowd’s
wisdom—the expected difference between indi-
vidual error and crowd error—is nonlinear in
the amount of bias and nonindependence of the
judgments, our results yield simple and general
rules specifying when a simple average will be
wise. While a simple average of the crowd is
not always wise if individuals are not sampled
uniformly at random, we show that there always
exists some a priori aggregation rule that makes
the crowd wise.

Our results suggest that crowd wisdom is
robust to different choices of aggregation and
sampling rules. That is, how one aggregates the
judgments or chooses an individual judge rarely
affects the qualitative conclusion that even a
crowd that is a simple average of judges is wiser
than the individual. By identifying conditions
for crowd wisdom, our results also provide
guidance for constructing an optimally wise
group—a group whose accuracy most exceeds
that of its individual members—with two sur-
prising conclusions emerging. First, a crowd
becomes wisest when it is maximally informa-
tive, which entails that its members’ judgments
are as negatively correlated with each other as
possible, as opposed to being independent.
Thus, the best judge to add to a crowd is one
that is maximally different from others. One
intuitive analogy of this result is to think of the
group as a financial portfolio: Sometimes it is
better to diversify performance by “hedging”
and including an asset that performs well when
other assets perform poorly. This result pro-
vides mathematical support for the idea that
crowds with more diversity are wiser (Hong &
Page, 2004). Furthermore, our theoretical
framework provides a mechanism for determin-
ing when it would be better for the overall group
prediction to add a group member who, perhaps,
is less skilled than the alternative members, but
provides diverse predictions. In other words,
our framework provides a quantification of the
accuracy–diversity trade-off.
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A second surprising conclusion is that while
the absolute accuracy of the crowd depends on
the direction and magnitude of members’ bias,
it is almost always preferable to use a weighted
aggregate of judgments rather than select the
single best group member, even if the crowd
members are biased. Unless the best group
member can be selected deterministically, as in
certain intellective tasks (Laughlin, 1996), the
decrease in variance of predictions caused by
aggregating judgments will offset the bias, a
manifestation of the well-known bias/variance
trade-off (Gigone & Hastie, 1997).

We define accuracy as the average squared
error of prediction (whether a group or individ-
ual). This is a common “gold standard” accu-
racy metric within the field of statistics (Leh-
mann & Casella, 1998). This accuracy metric
allows us to derive distribution-free results on
crowd wisdom. In other words, we make no
assumptions regarding the underlying distribu-
tional form of the individual or group’s predic-
tions, such as normality, nor do we impose any
constraints on the distribution’s shape such as
symmetry or unimodality. Alternative accuracy
definitions (e.g., average absolute error) can
change the conclusions of our model, though
our approach is one that could, in theory, be
extended to any accuracy metric.

We present an application of our framework
to experimental studies by reanalyzing the data
collected, analyzed and published by Vul and
Pashler (2008) and Simmons et al. (2011). Our
analysis finds a “wisdom of the crowd” effect
when applied to the group of individuals from
Vul and Pashler (2008), extending the original
analysis which examined the accuracy of pooled
repeated judgments within individuals. Our re-
analysis of the Simmons et al. (2011) data sup-
ports the overall treatment effect of increasing
individual bias by manipulating the sports bet-
ting information available to them. In contrast
to the original findings reported by Simmons et
al. (2011), our reanalysis, guided by our new
formulation, finds an overall improvement of
the crowd’s predictions relative to individuals
across all treatments in the study. In other
words, while the members are individually bi-
ased and the crowd not particularly accurate, the
crowd is still wise relative to the individual.

In the next section, we present the general def-
inition of crowd wisdom and our basic sampling
assumptions. We then derive a family of inequal-

ities for evaluating the wisdom of the crowd ef-
fect. We then analyze several special cases, in-
cluding comparing an equally weighted linear
aggregate of the judges to probabilistically select-
ing an individual judge according to his or her
skill. We then apply our framework to a reanalysis
of two data sets. We conclude with a discussion
and present future directions for this work.

The General Model

The Crowd Prediction

Consider a set of N-many decision makers
(DMs), where each DM makes a judgment
about the unknown value of a criterion. We
model the criterion being predicted (or esti-
mated) by the group members as a random
variable with finite mean and variance. In this
way, we conceptualize our framework as apply-
ing to random criteria, as in prediction, as well
as to the special cases of estimating a single
fixed quantity (which we accommodate by set-
ting the variance of the criterion to 0). We take
this criterion value to be a random variable, Y,
with mean �y and variance �y

2.
Similarly, we assume that each DM’s judg-

ment is a random variable. This assumption
represents the variability of a DM who gives
variable responses to the same task. With this
assumption, we can model how a DM’s predic-
tions correlate with the criterion as well as other
DMs in the crowd. Let the prediction distribu-
tion of the ith DM be the random variable Xi

with mean �xi and variance �xi
2 .

A crowd prediction, denoted C, is defined as
the random variable formed by linearly combin-
ing the DMs according to predetermined
weights wi, C � �i�1

N wiXi, with the restriction
that all wi are non-negative and, to ensure
uniqueness, �i�1

N wi � 1. The weights, wi, are
not random variables, but rather fixed choices of
how to combine crowd member judgments.

At this point, note that we place no a priori
restrictions on the �xi and �xi

2 values. This al-
lows for the possibility that DMs are biased,
meaning that their average judgment would not
equal the average criterion value, E�Xi� �
�xi � �y. Also note that we allow DMs to have
different prediction variances, �xi

2 , and arbitrary
covariances with other DMs where �xi,xj de-
notes the covariance of Xi and Xj. In other
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words, the judgments of the crowd members
may be correlated with each other. In this way,
we can model the effects of crowd members
influencing each others’ judgments. This ap-
proach builds upon the seminal works of Hog-
arth (1978) and Winkler (1981), and our anal-
yses generalize those of Einhorn, Hogarth, and
Klempner (1977).

Finally, note that we place no a priori restric-
tions on the possible ranges of the covariance
between Xj and Y, denoted �xi,y, other than the
usual positive semidefinite restrictions on cova-
riance matrices. In other words, some crowd
members may have more skill than others in that
their judgments are better related to the crite-
rion.

To fix these ideas, our framework could be
used to evaluate the following types of tasks:

1. A group of N-many financial analysts that
predict the weekly changes (or absolute
changes) in the value of a market index (such as
the DOWJI), or the exchange rate of the U.S.
dollar and the Euro.

2. A group of N-many sports prognosticators
who predict the number of points scored every
week in all NFL games, or the number of goals
scored in the Bundesliga.

3. A group of N-many weather forecasters who
predict the total amount of monthly rain, or the
average monthly temperature in a given location.

4. A group of N-many economists predicting
the probability that the unemployment rate next
month will be below 8%.

In all of these cases, we have a random target
variable (criterion) and repeated random predic-
tions from multiple judges. The individual fore-
casts and observed realizations of the correspond-
ing random variables allow straightforward
estimation of all the parameters (means, variances
and covariances) that play a role in our model.

We clarify that our definition and analytic
results are defined over a single, abstract pre-
diction task. Often, one is interested in the wis-
dom of the same crowd across multiple, distinct
prediction tasks. In Section 5, we demonstrate
how our theory can be extended to such cases
by adding some additional assumptions on
crowd behavior for our reanalysis of the Vul
and Pashler (2008) data set. This allows for an
application of the theory to a wide range of
empirical data sets.

Our model and results are limited to so-called
“statisticized” groups, where the crowd is

merely a mechanical linear aggregation of indi-
vidual judgments, as opposed to, for example,
freely interacting deliberative groups like juries
or structured group interactions (e.g., Delphi
method; Linstone & Turoff, 1975). While this
focus is perhaps somewhat limited, it is consis-
tent with much of the literature on crowd wis-
dom (although see Merkle & Steyvers, 2011, for
a Bayesian aggregation model using nonlinear
weights). Our definition of a “crowd” prediction
as a linear combination of group member pre-
dictions contains the simple group average as a
special case. Our approach can be seen as a
generalization of several previous approaches,
such as comparing the group average with an
individual selected uniformly random (Einhorn
et al., 1977; Wallsten & Diederich, 2001). We
extend these approaches by considering other
special cases, such as the one where the proba-
bility of selecting an individual is proportional
to that individual’s expected performance (mea-
sured by the correlation with the criterion vari-
able).

Prediction of an Individual Selected
Randomly

We consider whether the crowd’s judgment
is expected to be better than an individual crowd
member’s. Let P be the random variable formed
by selecting a single member of the crowd
probabilistically, and let pi denote the probabil-
ity of selecting the ith crowd member, with
pi � 0, ∀i � �1, 2, . . . , N� and �i�1

N pi � 1. As
a special case, if all pi values are equal, that is,

pi �
1

N
, ∀i � �1, 2, . . . , N�, then P reduces to

selecting any individual DM with equal probabil-
ity. At the other extreme, if pk � 1 with pi �
0, ∀i � �1, 2, . . . , N�, i � k, then the kth DM is
selected with probability one, for example, the
highest performing group member is known. In a
later example we consider the case where pi is
proportional to the ith DM’s correlation with Y.

A Wisdom of the Crowd Criterion

We consider the expected squared loss be-
tween each prediction distribution and the cri-
terion distribution Y throughout. We compare
the values E[(C � Y)2] and E[(P � Y)2] to one
another, where “E�·�” is the expectation opera-
tor. In other words, the prediction model that
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comes closest, on average, to Y is considered to
be more accurate. This accuracy criterion, ex-
pected squared-error, is only appropriate for
tasks in which “close-ness” of a prediction or
judgment can be evaluated on a continuous
scale (see Lee, Steyvers, de Young, and Miller,
2012; Yi, Steyvers, Lee, & Dry, 2012, for recent
approaches to modeling crowd wisdom for
combinatorial and ranking tasks, which would
not meet our modeling assumptions).

We define a wisdom of the crowd effect to
hold if, and only if,

E[(C � Y)2] � E[(P � Y)2], (1)

for some crowd aggregate weights, wi, i �
�1, 2, . . . , N�, and selection distribution proba-
bility weights pi, i � �1, 2, . . . , N�. Note that
the right-hand side of Inequality (1) is the ex-
pected accuracy of selecting an individual ac-
cording to an arbitrary, prespecified probability
distribution, in contrast to previous formula-
tions such as evaluating the arithmetic mean
accuracy of individual predictions (Larrick et
al., 2012).

Let �X be the N � 1 vector of the DMs’ mean
predictions. Let �xx be the covariance matrix of
the Xi, i � �1, 2, . . . , N�, random variables. Let
�xy denote the N � 1 vector of covariances of Y
with each Xi, i � �1, 2, . . . , N�. It is straightfor-
ward to show that E[(C � Y)2] is equal to the
following:

E[(C � Y)2] � ��X
′ w � �y�2 	 w′
XXw

� 2w′�xy 	 �y
2,

where w is the N � 1 vector of weights,
wi, i � �1, 2, . . . , N�, defining C.

Next, we consider the random variable (P �
Y)2. An application of the iterated expectation
theorem (e.g., Bickel & Doksum, 2001) yields:

E[(P � Y)2] � �
i�1

N

pi�(�xi � �y)
2 	 �xi

2 � 2�y,xi

	 �y
2�.

Proposition 1. (Wisdom of the Crowd
Effect). The aggregate crowd prediction dis-
tribution, C, defined by w has lower expected
loss than an individual judgment selected ac-

cording to the probability measure, pi, i�
�1, 2, . . . , N�, if, and only if, the following in-
equality holds:

(�X
′ w � �y)

2 	 w′
XXw � 2w′�xy 	 �y
2

� �
i�1

N

pi�(�xi � �y)
2 	 �xi

2 � 2�y,xi 	 �y
2�. (2)

It is possible to rearrange Inequality (2) in a
way that separates clearly the various factors
that drive the effect. By rearranging terms, we
can simplify this expression as follows,

�
i,j�1

i�j

N

wiwj(�xi,xj 	 �xi�xj) � 2�
i�1

N

(wi � pi)(�y�xi

	 �xi,y) � �
i�1

N

�wi
2 � pi���xi

2 	 �xi
2 �. (3)

If we additionally assume that �y � 0 we
obtain:

�
i,j�1

i�j

N

wiwj(�xi,xj 	 �xi�xj) � 2�
i�1

N

(wi � pi)�xi,y

� �
i�1

N

�wi
2 � pi�MSExi.

The right-hand side of this inequality focuses
on the N individuals in the crowd. In particular,
this expression highlights the effect of the dif-
ference between the weights assigned to indi-
viduals in the crowd (wi) and the probabilities of
selecting these individuals from the crowd (pi)
on the individual mean squared errors of the
individual judges and the individual judges’ co-
variances with the criterion. This expression is
maximized when individual judges with high
covariances with the criterion (�y,xi) and low
individual mean squared errors are over-
weighted in the crowd, relative to their proba-
bility of selection. On the other hand, the left-
hand side of the inequality is independent of
the criterion, Y, and reflects only the interrela-
tion between the various judges in the crowd
and their relative weights. It is minimized when
there is an inverse relationship between
E(xixj) � �xi,xj � �xi�xj) and wiwj, that is, when
pairs of judges with high (low) E(xixj) are as-
signed relatively low (high) weights.
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The above proposition provides an explicit,
testable condition to determine whether a given
crowd is wise. In the following special cases,
we demonstrate how this result can be used to
evaluate the relative trade-offs of group member
interdependence versus bias. First, we prove a
basic result within our framework.

Result 1. Consider the case when wi �
pi, ∀i � �1, 2, . . . , N�, that is, the aggregation
weights providing the crowd prediction are
identical to the selection weights used to deter-
mine the individual DM prediction distribution.
Then a wisdom of the crowd effect always
holds.

Proof. See Appendix
Result 1 extends the finding that the crowd

member average is more accurate than the av-
erage crowd member to any situation in which
the aggregation weights are identical to the
probability weights used to select the individ-
ual. As in previous, related arguments (Dawes,
1970; Hogarth, 1978), Result 1 is a straightfor-
ward application of Jensen’s inequality.

While Result 1 guarantees the existence of an
aggregation method that makes the crowd wise,
it is interesting to consider particular aggrega-
tion rules, such as an unweighted aggregate,
against other methods of selecting individuals.
For example, a practical problem that one might
face is to choose between the judgment of an
available expert and a crowd. Without exact
knowledge of the relevant crowd parameters, it
is difficult to decide on aggregation rules other
than a simple average. We can still run through
scenarios involving a simple crowd average,
however, to see how likely it would be to find
an expert that is more accurate. Furthermore, we
may wonder about the extent of crowd wisdom
and factors that lead to maximizing the crowd’s
predictive advantage over the individual. We
next provide some comparative analyses using
Inequality (1) to demonstrate factors that max-
imize crowd wisdom. In the section following,
we examine special cases in which the aggre-
gation weights do not match the selection
weights.

Unweighted Average Versus Selecting an
Individual at Random With Equal

Probability

Consider the simple case where the crowd, C,
is defined by the unweighted (simple) group

average, wi �
1

N
, i � �1, 2, . . . , N�, and the

competitor model P is defined by the uniform

distribution pi �
1

N
, i � �1, 2, . . . , N�; that is,

the competitor individual is selected uniformly
at random. This models the case where one has
no prior information to suggest or reason to
believe that any member of the group is any
better at the prediction task than any other.
Inequality (2) can be rearranged and written:

1

N2�
i�1

N

�
j�1

N

�xi,xj �
1

N�
i�1

N

�xi
2 �

1

N�
i�1

N

(�xi � �y)
2

� 	 1

N�
i�1

N

�xi � �y
2

. (4)

Recall that this inequality is simply an alge-
braic rearrangement of the inequality, E[C �
Y)2] � E[(P � Y)2], and thus, the magnitude to
which (4) deviates from equality is precisely the
expected difference between the random vari-
ables (C � Y)2 and (P � Y)2. The greater the
deviation from equality in (4), the more pro-
nounced the wisdom of the crowd effect.

What does the composition of the “crowd” look
like when the inequality 0 � E[(P � Y)2] �
E[C � Y)2] is maximized? When it is mini-
mized? First, consider the left-hand side of in-
equality (4). Because the covariance matrix of
the judges is positive semidefinite, this side of
the inequality is necessarily nonpositive. To
simplify matters, assume that all predictions are
standardized such that the covariance between
judges X1 and X2 can be interpreted as correla-
tions, rxij. The left-hand side of inequality (4) is
maximized when all the judges are perfectly
correlated with each other, that is,

	 1

N2�i�1
N �j�1

N rxij �
1

N�i�1
N rxi

2
 �
N2

N2 �

N

N
� 0. As the judges become less correlated

with one another, this value becomes smaller
and the wisdom of the crowd effect becomes
more pronounced. This result is intuitive be-
cause if all the judges provide the same (or
almost the same) predictions, there would be
little gained by aggregation. Note that when
crowd members’ judgments are highly corre-
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lated, adding in a new member whose judg-
ments are nonredundant improves crowd wis-
dom, particularly for a small crowd. As is
evident from Inequality (4), this improvement
can occur even if the new, nonredundant mem-
ber has substantially lower skill than the exist-
ing members. The intuition behind this result is
clearer when one considers other linear aggre-
gation problems: If one has highly redundant
predictor variables in a multiple regression,
adding a predictor that gives new information
will help the model even if the new predictor is
poorly correlated with the outcome variable. In
the context of multiple regression this effect is
similar to “suppression” in that a new member
can improve the crowd’s estimate via his or her
relationship with other judges and not the crite-
rion per se (see Tzelgov & Henik, 1991).

It is worth noting that while the left-hand side
is smaller for perfectly uncorrelated judges, it is
not minimized in this case. This term is mini-
mized when all judges are equally and maxi-
mally negatively correlated with one another.
This result is distinct from the folk explanation
of crowd wisdom which holds that indepen-
dence among judges is necessary so that errors
cancel out (variance reduction does factor into
the right-hand side of this inequality, as shown
below). This result is in line, however, with
other mathematical models demonstrating
how group diversity can improve overall
group accuracy (Hong & Page, 2004). To
clarify, this maximal negative correlation is
subject to the usual positive semidefinite con-
straints on the interjudge correlation matrix,
which, for large crowds, will be necessarily
very small. As the number of judges goes to
infinity, the maximal negative correlation of
all judges approaches zero.

While the left-hand side of Inequality (4)
describes the effects of intercorrelation between
judges, the right-hand side describes the effects
of judge bias, that is, the expected squared de-
viation between a judge’s prediction and the
criterion. This side of the inequality must
necessarily be non-negative. This term,
1

N�i�1
N ��xi � �y�2 � 	1

N�i�1
N �xi � �y
2

, is

minimized when the true means of all judge pre-
dictions are equal to the mean of the criterion, that
is, when all judges are unbiased. In this case, there
is little benefit to aggregating the judges from the

standpoint of minimizing bias because all of them
are unbiased. All aggregation can do in this
situation is reduce the variance of the aggregate
prediction (Wallsten & Diederich, 2001). Maxi-
mizing this term is far more interesting. The right-
hand side of (4) becomes arbitrarily large as the
average squared bias of the judges becomes large
with the squared bias of the judge average remain-
ing small or zero. In this case, all judges are
(possibly greatly) biased in their individual pre-
dictions, yet the average of their predictions is
very close to the true criterion. Put in the termi-
nology of Larrick and Soll (2006), the individual
judge predictions “bracket” the true criterion
mean, falling, more or less, both above and below
�y. Here, the individual predictions systematically
fall either above or below �y, but when averaged,
this individual bias is cancelled and the crowd
prediction is wise.

Unweighted Average Versus Selecting an
Individual According to Their Skill

In the previous section, we considered the
simple case where one does not discriminate
between the individual judges a priori. Prior
work has demonstrated that for intellective
tasks without demonstrable solutions, groups
are often poor at identifying the highest per-
forming member (Henry, 1995). While infor-
mative, this case may not be general. Often, we
do have information on the prior performance of
judges; that is, their skill at a particular predic-
tion task, for example Cooke’s method (Cooke,
1991). In this section, we compare different
aggregation weights, wi, to a randomly selected
individual such that the probability of selecting
the ith DM is proportional to that judge’s skill,
defined as the correlation of his or her predic-
tion with the criterion, Y. Let all judges’ skill be
non-negative, rxiy � 0, ∀i � �1, 2, . . . , N�, and
let pi be defined as follows:

pi �
rxi,y

�
i�1

N

rxi,y

. (5)

Clearly, the higher the correlation of an indi-
vidual’s predictions with the criterion, the more
likely that individual will be selected. If all DM
predictions are equally correlated with Y then
this choice of P will reduce to selecting a DM
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uniformly at random, which has already been
shown in Result 1 to be inferior, on average, to
the case where C is the unweighted average. At
the other extreme, if only a single DM’s predic-
tions correlate with Y then that DM will be
chosen with probability one, and will, most
likely, outperform the unweighted average of
the crowd.

Let C be defined according to the simple
unweighted average and let P be defined ac-
cording to (5). Applying Proposition 1 and re-
arranging terms gives us the following result.

Corollary 1. Let wi �
1

N
, ∀i � �1, 2, . . . ,

N� and let pi be defined as in Equation (5). As-
sume that all variables are standardized such
that �xi,y � rxi,y and �xi,xj � rxi,xj, ∀i, j. Then a
wisdom of the crowd effect holds if, and only if,

MSEcrowd � �
i�1

N rxi,y

�
i�1

N

rxi,y

MSExi

� 2	Mean(rxiy) � �
i�1

N rxi,y
2

�
i�1

N

rxi,y

, (6)

where MSExi
is the mean squared error for the

ith DM prediction distribution and MSEcrowd is
the mean squared error for the crowd predic-
tion, C.

Mean squared error is equivalent to the sum of
the prediction distribution’s squared bias (with
respect to �y) and its variance. Examining the
right-hand side of Inequality (6), we see that the
crowd prediction benefits when skill is evenly
distributed among the DMs; in other words, when
all DMs are “equally good.” The left-hand side of
Inequality (6) indicates that for the crowd to do
well, the most highly skilled DMs (those with the
highest correlations with the criterion) should also
have the largest biases.

One DM Doesn’t Follow the “Herd”:
Unbiased Case

Consider the case of a defector, “one DM
who doesn’t follow the herd” model assuming
that C is defined by the unweighted group av-
erage and P is defined as in (5). In this case, we
will assume that there are N-many judges with

N – 1 DMs who positively correlate with the
criterion, Y, and each other at the value 	. This
group of N – 1 DMs represents the “herd.” The
remaining DM is the “dissident” and correlates
with the criterion Y at 
. To ensure the positive
semidefiniteness of the intercorrelation matrix
between judges and the criterion, we will also
assume that the dissident correlates with the
herd judges at 	. For now we assume that all
N-many DMs are unbiased in their predictions,
that is, �xi � �y, ∀i � �1, 2, . . . , N�. We will
consider biased cases in subsequent sections.

Clearly, when 	 � 0 and 
 is large, we
have a group of uncorrelated DMs and only
the dissident DM has any skill at predicting
the criterion variable.1 Under this set of as-
sumptions, the dissident is selected with prob-
ability 1 under P, and will be more accurate,
in expectation, than the group aggregate C. At
the other extreme, if 	 � 
 we have a group
of equally skilled DMs who are equally cor-
related with one another. Under this condi-
tion, P, as defined in (5), reduces to selecting
one of the DMs with equal probability and
will always do worse, on average, than the
unweighted aggregate, C, by Result 1. To
investigate this relationship, we consider
three different levels of “skill” on the part of
the dissident, 
 � .95 (high), 
 � .70 (me-

dium) and 
 � .40 (low), and vary the ratio
�

�
from 0 to 1. As an application of Corollary 1,
let LHS be the left-hand side of Inequality
(6), similarly, let RHS be the right-hand side
of Inequality (6). Thus, the value R � RHS/
LHS is the ratio of individual expected loss to
crowd expected loss. For ease of presentation,
our results are in terms of R on a logarithmic
scale, denoted log(R). Log(R) provides a con-
tinuous measure of the wisdom of the crowd
effect with positive (negative) numbers indi-
cating the crowd is expected to be more (less)
accurate than an individual chosen at random.
When log(R) � 0, the expected loss of the
crowd is equal to the individual expected loss.
Figure 1 plots log(R) as a function of the ratio

1 As N increases without bound, 	 equals the minimal corre-
lation between the dissident and herd DMs that guarantees that the
resulting correlation matrix is positive semidefinite.
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�

�
for group sizes N � 5,10,15,20,25 sepa-

rately for the different skill levels of the dis-
sident. The line denoting equal accuracy of
the crowd and a randomly selected individual
is plotted for reference.

Note that the simple unweighted average, C,
performs quite favorably compared with an in-
dividual selected at random according to (5),
even in the case where the dissident has a high
correlation with the criterion. Selecting an indi-

vidual according to (5) outperforms the crowd
in this case only when the herd is very weakly
correlated with the criterion, for example, the
point at which C outperforms P for N � 15
under 
 � .95 occurs when 	 � .052. The size
of the groups plays a large role in determining
the point at which the wisdom of the crowd
effect emerges. As expected, the larger the
group size the more pronounced the wisdom of

the crowd effect and the smaller the value of
�

�
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Figure 1. This figure plots log(R) as a function of the ratio
�

�
for 
 � .95, .70, .40. For each

value of 
, log(R) values are plotting for five samples sizes, N � 5, 10, 15, 20, 25. The
left-hand graph corresponds to 
 � .95, the middle graph corresponds to 
 � .70, and the
right-hand graph corresponds to 
 � .40. The line, log(R) � 0, is plotted for reference. All
points above this line represent cases where the crowd’s performance is superior.
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at which it emerges. There is also a strong effect
of the skill level of the dissident. As 
 decreases,

the favorable range of the ratio
�

�
under P be-

comes quite small and, eventually, vanishes (
 �
.40). In this case, even if one could select deter-
ministically the best member of the group, their
modest correlation with the criterion would not
offset the reduction in sampling error by incorpo-
rating an unweighted average of the rest of the
DMs. To summarize, unless one could nearly de-
terministically select the best member of the
group, who must be highly skilled, a simple un-
weighted group average will, on average, prevail.

It is interesting that the performance of C
versus P under these assumptions is highly non-

linear. Under the extreme case of
�

�
� 1, a

wisdom of the crowd effect is guaranteed to
occur by Result 1, yet this is not the condition
that yields maximal log(R) values. Across all
three conditions, the largest values of log(R)
occur when the herd is modestly, but not max-
imally, correlated with the criterion. Under

these values of
�

�
, the dissident has a reasonable

chance of not being selected with the remaining
group members having relatively smaller pre-
diction correlations with the criterion. Yet, there
is a large amount of information present in the
group as a whole, as measured by small judge
intercorrelation, so the prediction of C will
likely perform extremely well.

One DM Doesn’t Follow the “Herd”:
Biased Case

Let us return to the “one DM doesn’t follow
the herd” model analyzed above but allow the
DMs in the herd to be biased in their predic-
tions. Intuitively, the wisdom of the crowd
effect, as defined in Proposition 1, should
depend not just on the magnitude of the DM
biases but also on their relative configuration.
For example, a herd in which the DM biases
are equally likely to be above/below �y will
likely result in different log(R) values than a
herd in which all DM biases are in the same
direction.

We consider two cases. In the symmetric
case the prediction biases of the herd DMs are
no more likely to be above than below �y with
the dissident DM as the sole member whose
predictions are unbiased. Table 1 displays the
�X values for this model under the symmetry
condition for the five group sizes, N � 5, 10,
15, 20, 25. Recall that because �y is defined to
be zero, it suffices to specify �X to model
bias. As before, we assume that all prediction
values are standardized so that values of �X

can be interpreted as bias in units of standard
deviations. As shown in Table 1, the number
of DMs in each group with positive or nega-
tive biases are roughly equal and symmetric
with respect to bias magnitude. As group size
increases, the magnitude of the biases also
increases, with a maximal bias of plus or
minus two standard deviations.

Table 1
Bias Configurations for the Five Hypothetical Groups Under the Symmetry Condition

Number
of

decision
makers
(DMs)

Possible bias values

0 .5 �.5 1 �1 1.5 �1.5 2 �2

Counts per group

N � 5 1 1 1 1 1 0 0 0 0
N � 10 1 3 2 2 2 0 0 0 0
N � 15 1 3 3 3 3 1 1 0 0
N � 20 1 4 3 3 3 3 3 0 0
N � 25 1 3 3 3 3 3 3 3 3

Note. The columns indicate the possible bias values we consider, as well as the number of DMs in each group with that
bias level. For example, the group with 5 DMs has one unbiased DM, with the remaining 4 DMs having bias levels of .5,
�.5, 1, and �1.
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Figure 2 displays log(R) values as a func-

tion of the ratio
�

�
under the symmetry con-

dition. All other assumptions are identical to
the analysis in the previous section. The
log(R) values are much larger in this condi-
tion than the completely unbiased case previ-
ously examined, likewise, the size of the
group has a more pronounced effect on how
“wise” a group is, with larger group values
resulting in larger log(R) values. In other

words, given that the dissident is the only
unbiased DM in the group, selecting an indi-
vidual probabilistically incurs a much higher
penalty. However, from the perspective of the
crowd prediction C, the bias penalty is aver-
aged out, because the biases of the individual
members are symmetric about �Y, similar to
the bracketing effect of Larrick and Soll
(2006). In this scenario, aggregation can only
help to lower prediction variance, hence the
more extreme wisdom of the crowd effect.
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Figure 2. This figure plots log(R) as a function of the ratio
�

�
for 
 � .95, .70, .40. For each

value of 
, log(R) values are plotting for five samples sizes, N � 5, 10, 15, 20, 25. The
left-hand graph corresponds to 
 � .95, the middle graph corresponds to 
 � .70, and the
right-hand graph corresponds to 
 � .40. The line, log(R) � 0, is plotted for reference. All
points above this line represent cases where the crowd’s performance is superior.
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Next, we examine another version of the model
with identical assumptions except that the bias
configuration of the DM predictions is asymmet-
ric. For example, all judges systematically over-
estimate the probability of a rare event, such as the
probability of a high intensity earthquake. We set
the �X vectors equal to those defined in Table 1,
with the exception that we consider the absolute
values of all entries for all �X. For this model, all
nondissident DMs are systematically positively
biased in their predictions with respect to �y with

bias values ranging from .5 to 2 standard devia-
tions.

Figure 3 displays these log(R) values as a

function of
�

�
for 
 � .95, .70, .40. As ex-

pected, the wisdom of the crowd effect is less
extreme than in the symmetry condition. Al-
though these log(R) values are smaller than in
the symmetry condition, the overall magnitudes
of the log(R) values and their relationships to
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Figure 3. This figure plots log(R) as a function of the ratio
�

�
for 
 � .95, .70, .40. For each

value of 
, log(R) values are plotting for five samples sizes, N � 5, 10, 15, 20, 25. The
left-hand graph corresponds to 
 � .95, the middle graph corresponds to 
 � .70, and the
right-hand graph corresponds to 
 � .40. The line, log(R) � 0, is plotted for reference. All
points above this line represent cases where the crowd’s performance is superior.
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the ratio
�

�
are similar to that of the completely

unbiased condition. This result speaks strongly
to the general robustness of the unweighted
average. Even in the face of highly and unidi-
rectionally biased members, it is still often pref-
erable to simply average the members as op-
posed to selecting a single, best-performing
unbiased one.

Applications of the Model to Real Data

In this section, we reanalyze data from two
papers that investigated the wisdom of crowds
using two different types of tasks (trivia questions
and sports betting) with different types of data
(continuous estimates and dichotomous choices).
The first analysis applies our framework to the
data from Vul and Pashler (2008) to estimate the
expected loss of a crowd versus an individual
selected at random. This analysis illustrates how
our theory could be extended to multiple predic-
tion/estimation tasks. The second analysis applies
our framework to the data from Simmons et al.
(2011) to estimate the wisdom of a crowd whose
members repeatedly predicted sports outcomes
against a point handicap. We use our framework
to highlight the impact of member bias induced by
the four different experimental conditions and
demonstrate how bias impacts the performance of
a crowd.

Estimation of Expected Loss

Recall that Inequality (2), our criteria for a
crowd to be wise, provides a breakdown of
expected squared loss from a crowd versus a
randomly chosen individual, and is as follows,

��X
′ w � �y�2 	 w′
XXw � 2w′�xy 	 �y

2

� �
i�1

N

pi�(�xi � �y)
2 	 �xi

2 � 2�y,xi 	 �y
2�.

The left-hand side (LHS) of this inequality is
a linear combination of (a) the crowd level bias,
(b) covariances among crowd members, and (c)
the crowd covariance with criterion, and (d) the
variance of the criterion. The right-hand side
(RHS) of Equation 2 is the linear combination
of (a) the bias of each individual’s estimates, (b)
the variance of each individual’s estimates, and
(c) the covariance of each individual’s estimates

with the criterion, and (d) the variance of the
citerion. For each dataset, we estimate each of
the components of LHS and RHS. As in the
previous section, we will evaluate crowd wis-
dom via log(R) where R � RHS/LHS, which
we estimate for each dataset. We compare the
estimate of log(R) to a previously established
measure of crowd performance: the percentage
of individuals that are less accurate than the
crowd (Simmons et al., 2011). This percentage
is determined by comparing the mean-squared
error (MSE) of each individual with the MSE of
the crowd. It is important to note that by moving
from the theory to empirical data, we must
estimate the parameters of interest and, subse-
quently, log(R). Hence, we also need to be
concerned with sampling error with respect to
parameter estimation. To impose as few as-
sumptions as possible on the empirical data, we
carried out a jackknife procedure (Miller, 1974)
to estimate this variability. Alternative methods
could also be used, for example, Bayesian esti-
mation, with additional distributional assump-
tions on DM behavior.

Reanalysis of Vul and Pashler (2008)

The theory we have developed in previous sec-
tions was defined over a single, abstract prediction
task. To illustrate how our theory could be applied
to the more general case of multiple tasks, we
consider experimental data from Vul & Pashler
(2008). To be clear, we are not proposing a theory
of crowd wisdom across multiple tasks per se,
rather we are suggesting one possible method of
extending our approach. Vul and Pashler ran a
study with multiple tasks in the form of 8 trivia
questions. Our analysis of this data set will require
additional assumptions on the questions. Given
the similarity of the questions, we considered
these questions as a sample of questions drawn
from a universe Y of questions that could have
been selected. We introduce a new index, j, for
estimating the parameters from this population of
questions. Considering the questions as a random
sample from Y allows this collection of questions
to be treated as a random variable with mean, �y,
and variance, �̂y

2.
Hence, we are making inferences at the level

of the population of possible questions. The
biases and covariances of the DMs are defined
at the level of the random variable Y. We do not
assume that DMs have stationary biases with
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respect to each trivia question; rather, each DM
has a bias with respect to the average answer
from the universe of possible trivia questions,
�y. All questions from Vul and Pashler were on
a similar scale (responses from 0–100).

Vul and Pashler (2008) used data from N � 428
subjects who provided estimates (from 0 to 100)
to J � 8 questions. Each subject provided two
responses (immediately; delayed by three weeks);
the current analysis uses only the immediate re-
sponse data. Each of the subjects, i � 1, . . . 428,
produced judgments for each of the questions, j �
1, . . . 8, denoted xij. The answers to the 8 ques-
tions are denoted as yj. Vul and Pashler tested the
wisdom of the crowd by comparing individual
versus group mean squared error (MSE) across the
8 questions.

Inequality (2) requires an estimate of the
mean and variance of the criterion Y that are
computed as the sample mean and sample vari-
ance of the 8 true answers given by,

�̂y � y� �
1

8�
j�1

8

yj � 32.64,

and

�̂y
2 �

1

(8 � 1)�j�1

8

(yj � y�)2 � 556.11.

Next, we estimate the mean judgment from
each individual and the covariance between

the judgments produced by all pairs of indi-
viduals as,

�̂xi
� x�i �

1

8�
j�1

8

xij for i � 1, . . . , N,

and


̂xixk
�

1

8 � 1�
j�1

8

(xi,j � x�i)(xk,j � x�k).

Finally, the covariances of the judgments
with criterion variable are computed in the same
way for each individual using the 8 judgments
and answers:

�̂xiy
�

1

8 � 1�
j�1

8

(xi,j � x�i)(yj � y�).

Results

We computed the estimates for the LHS and
RHS of Inequality (2) and compared the measure
log(R) with the commonly used post hoc method
of computing the percent of individuals beat by
the crowd in Table 2. We manipulate the defini-
tion of the crowds’ judgment by (a) creating sev-
eral subgroups of the original crowd and (b) ap-
plying different weighting criteria for the crowd
prediction. The first row is a comparison of the

Table 2
Estimates for Expected Loss of Crowd Versus a Randomly Selected Individual

Weights (w)

Expected loss estimate

log(R) (SE)
Proportion of individuals

beat by the crowd
LHS

(Crowd)
RHS

(Individual)

Equal weights
100% of crowd 131.23 608.58 1.53 (0.07) 0.96
Most valid individual 112.18 608.58 1.69 (0.08) 0.99
Most valid 5% 60.54 608.58 2.31 (0.04) 1.00
Most valid 25% 52.95 608.58 2.44 (0.07) 1.00
Most valid 50% 57.36 608.58 2.36 (0.09) 1.00
Least valid 50% 299.25 608.58 0.71 (0.06) 0.78
Least valid 25% 429.05 608.58 0.35 (0.06) 0.62
Least valid 5% 722.55 608.58 �0.17 (0.04) 0.30
Least valid individual 1251.11 608.58 �0.72 (0.04) 0.08

Unequal weights
Proportional to validity 87.12 608.58 1.94 (0.07) 1.00
Inversely proportional to validity 261.96 608.58 0.84 (0.06) 0.83

Note. Estimates of log(R) are accompanied by SEs produced from the jackknife procedure.
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equally weighted crowd against individuals drawn
randomly with equal probability. The next eight
rows in Table 2 show the results of producing
subsets of the original crowd by equally weighting
the judgments produced by subsets of individuals
based on their validity. For example, the most
valid individual crowd is created by giving only
the most valid crowd member a weight of 1, and
putting zero weight on the remainder of the
crowd. The most valid 50% crowd was created by
weighting equally those ranked in the top 50%
based on validity and giving a weight of zero to
the bottom 50%. Each crowd in Table 2 is com-
pared with the expected loss of randomly selecting
an individual from the entire sample. The bottom
two rows apply unequal weights to the entire
crowd that are proportional to each individual’s
validity.

The columns of Table 2 provide estimates of
expected loss (in the first two columns), the mea-
sure of crowd performance, log(R), in the third
column, and the percent of individuals beat by the
crowd in the last column. We also include the
standard error of the estimate of log(R) computed
using the Jackknife procedure.2 The values of
log(R) correspond nicely to the percent of individ-
uals beat by the crowd (Pearson r � 93; Kendall
� � .94). Table 3 presents a breakdown of the
expected loss estimate based on (a) crowd bias, (b)
crowd covariance, and (c) crowd covariance with
criterion. This breakdown shows the source of
changes in the estimates of the crowd expected
loss. We can see that the marginal improvement of
the most valid individual is explained by the very
high crowd covariance term despite having lower
bias and higher covariance with the criterion.

The values from this example in Table 2
show that the crowd’s expected loss only ex-
ceeds the individual expected loss in very ex-
treme cases (i.e., the crowd weighting includes
the 5% least valid individuals). These results
demonstrate the robustness of the wisdom of
this particular crowd, even when applying
weights to the crowd that are inversely related
to validity.

Reanalysis of Simmons et al. (2011)

We now analyze a data set from a study
which suggested that the crowd is not wise, and
performs worse than a large majority of indi-
viduals. Simmons et al. (2011) hypothesized
that systematic bias in individual’s judgments

can potentially cause the crowd to be unwise
even when all conditions that typically foster
wisdom of the crowds hold. To test this hypoth-
esis, Simmons et al. designed a series of exper-
iments which use a point spread betting market;
previous research suggests that crowds in this
context may not be wise (Kahneman & Freder-
ick, 2002; Simmons & Nelson, 2006) because
of individuals having a tendency to bet on fa-
vorites over underdogs despite the fact that
point spreads attempt to produce even odds for
underdogs and favorites (Levitt, 2004; Sim-
mons & Nelson, 2006).

Simmons et al. (2011) ran an experiment
where they accentuated the effect of this bias to
choose the favorite by having subjects bet on
point spreads that were systematically shifted
(relative to Las Vegas point spreads) to make
the underdog team have better odds of winning.
The control condition required subjects to
choose which team they believed would win
against the point spread (labeled choice condi-
tion). The authors attempted to shift the amount
of bias for choosing the favorite by three exper-
imental manipulations. The warned choice con-
dition warned each individual that the point
spreads have been set incorrectly such that bet-
ting on the underdog team has the better odds of
winning. In the estimate condition subjects did
not bet against the point spread, but instead
provided an estimate of the final score of the
game. The estimate is then compared with the
point spread to infer a choice against the point
spread. This method is predicted to reduce bias
by shifting the response mode away from the
choice between the favorite and underdog
(which is systematically biased toward choos-
ing the favorite) to estimating the number of
points in which they expect the favorite to win.
Finally, subjects in the choice/estimate condi-
tion predicted the winner against the point
spread and then provided an estimate of the final
score. The choices for this condition are also
inferred from the estimates. The data consist of
N � 178 individuals (choice: n � 43; warned
choice: n � 39; estimate: n � 45; choice/
estimate: n � 51) betting on 226 games over the

2 Given J observations, the jackknife procedure that we
employed computes J-many estimates of log(R) after elim-
inating the jth observation (j � 1, . . . J). The J estimates are
used to compute the standard error. See Miller (1974) for
more details.
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course of 17 weeks (number of games per week
varied).

Simmons et al. analysis. Details of the
original analysis conducted by Simmons et al.
are found in Tables 2–4 of Simmons et al.
(2011). Their results show that in both choice
conditions (regardless of warning), the crowd is
biased and picks the favorite far too often (Sim-
mons et al. Table 2), and as a result, the crowd
predictions have fewer wins (Simmons et al.
Table 3) and outperform a very small percent-
age of individuals (Simmons et al. Table 4).
They report that the percent of individuals beat
by the crowd are 7% for choice, 0% for warned
choice, 57.8% for estimate, and 35.2% for
choice/estimate.3 These results suggest that the
crowds in the choice and warned choice condi-
tions are highly biased and as a result, not wise.

Expected loss analysis. We apply the ex-
pected loss metric to test crowd performance in
each of the conditions outlined above. This
methodology has the unique advantage of
showing the contribution of bias to the perfor-
mance of a crowd, a main objective of Simmons
et al. (2011). We take a slightly different ap-
proach to the data analysis that fits the statistical
assumptions of our framework more closely by
computing our estimates on the percent of fa-
vorites chosen in each of the 17 weeks of bet-
ting. This is a continuous measure with a mean
and variance that can be estimated across the 17
weeks of betting. Each individual judgment is
the percent of choices for the favorite made for
each of the 17 weeks of betting, denoted xij, and

the criterion is the percent of times the favorite
actually wins in each of the 17 weeks, denoted
yj. Some subjects were missing a large number
of estimates, so we included only subjects who
had missing data for less than 50% of the bets to
ensure that all interindividual covariances could
be computed. Our sample used N � 164, elim-
inating only 14 individuals.

The parameters in Inequality (2) are esti-
mated by modeling the true percent of favorites
winning against a point spread as a stochastic
process drawn from a distribution with a fixed
mean and variance for each week. The estimate
of the mean and variance of the criterion are
computed as the sample mean and sample vari-
ance of the true weekly percent of favorites
winning. The subjects’ mean judgment is com-
puted as the sample mean of their judgments
and the individual variance and covariance are
computed as the sample covariance matrix be-
tween the 164 individuals. Finally, the validity
is computed as the covariance between the in-
dividual judgments of the percent of favorites
winning each week and the actual percent of
favorites winning each week. These estimates
are used to compute the LHS and RHS of In-
equality (2), the measure of performance,
log(R), the MSE between the judged and true

3 The percentages differ depending on the method used to
compute them, we report the results based on the Simmons
et al. counting/median method.

Table 3
Break Down of Crowd Expected Loss Estimate

Weights (w) Bias
Crowd

covariance
Covariance

with criterion

Equal weights
100% crowd 19.19 339.76 783.84
Most valid individual 0.58 1,041.84 1,486.35
Most valid 5% 0.63 878.50 1,374.70
Most valid 25% 8.44 678.01 1,189.61
Most valid 50% 8.70 562.95 1,070.41
Least valid 50% 33.79 206.62 497.28
Least valid 25% 40.08 144.04 311.18
Least valid 5% 39.20 87.67 �39.56
Least valid individual 168.68 181.70 �344.63

Unequal weights
Proportional to validity 14.31 442.53 925.84
Inversely proportional to validity 29.54 209.83 533.52
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percent of favorites winning each week and the
percent of individuals beat by the crowd.

Results. Table 4 presents the expected loss
for an equally weighted crowd versus randomly
choosing an individual from the crowd, in each
of the four experimental conditions. Our analy-
sis supports the hypothesis of Simmons et al. by
demonstrating that the choice and warned
choice condition crowds performed worse than
the estimate and choice/estimate condition
crowds. However, our results also contradict the
Simmons et al. results in that crowds have lower
expected loss than a randomly selected individ-
ual and the crowd outperforms more than 50%
of individuals in all of the conditions. In other
words, all four conditions produced wise crowds
based on expected loss. Finally, Table 5 presents
the breakdown of the expected loss term for the
crowd. The inferiority of the choice and warned
choice conditions is driven by a much larger bias
term, as predicted by Simmons et al.

Why do the two methods produce different
results? There is a large discrepancy between
the percent of individuals outperformed by the
crowd calculated by Simmons et al. (2011) (Ta-
ble 2), and the percentages obtained by our
analysis (Table 5). This difference can be attrib-
uted to the different metrics used to evaluate
crowd performance. The Simmons et al. method

for generating crowd prediction is based on
averaging all individual predictions for each
individual game. A crowd choice for the favor-
ite is produced when more than 50% of the indi-
viduals chose the favorite for that game and a
crowd choice for the underdog is produced when
more than 50% of the individuals chose the un-
derdog for that game. This is a “majority choice
rule” that is sensitive only to the average being
above/below a threshold, but insensitive to the
magnitude of the distances from the threshold.

Figure 4 plots the proportion of individuals
beat by the crowd for all possible majority
choice rules. The wisdom of the crowd changes
by varying the majority choice rule from 0% to
100% of choices for the favorite required to
indicate a crowd choice for the favorite. For
example, at the 0% choice rule, the crowd
chooses the favorite for each game and per-
forms at the base rate level of 43% correct
choices (i.e., 43% of the favorites win in this
experiment). At the 100% choice rule, the crowd
chooses the underdog for each game, and per-
forms at the base rate level of 57% correct. Figure
4 clearly shows that any choice rule above 60%
produces a crowd that beats more than 50% of the
individual members for all conditions. While Fig-
ure 4 can reveal that the top two panels exhibit
more bias by shifting the step function to the right,
it does not definitively reveal if any of the crowds
are more or less wise.

Extensions to Small Groups Versus
the Crowd

Our definition and analysis has, thus far, been
restricted to the case of comparing a group
prediction to that of a randomly selected indi-
vidual. The framework itself could be general-
ized in a few directions with very minor modi-

Table 4
Computation of Expected Loss Using Equal Weights and Equal Probabilities for
Each Individual

Condition
Crowd

loss
Individual

loss log(R) (SE)
Proportion of individuals

beat by the crowd

Choice 0.07 0.11 0.40 (0.01) 0.71
Warned choice 0.07 0.10 0.40 (0.01) 0.66
Estimate 0.02 0.08 1.16 (0.02) 1.00
Choice/estimate 0.03 0.08 1.06 (0.01) 0.96

Note. Estimates of log(R) are accompanied by SEs produced from the jackknife procedure.

Table 5
Breakdown of the Crowd Expected Loss Estimate

Condition
Crowd

bias
Crowd

covariance

Crowd
covariance

with criterion

Choice 0.047 0.002 �0.005
Warned choice 0.043 0.002 �0.004
Estimate 0.001 0.001 �0.003
Choice/estimate 0.001 0.002 �0.003
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fications. For example, we could consider the
predictive accuracy of an aggregate of a small
group of talented decision makers compared
with the overall crowd. Certainly, a small group
comprised of experts has the potential to out-
perform a larger crowd comprised of less tal-
ented members. Yet, for the small group of
experts, it is reasonable to ask if the relative
boost in accuracy for predicting the expected
value of Y would outweigh the potentially
greater gains in variance reduction by incorpo-
rating a larger number of less-talented group
members. Also, performance for the small
group could be further diminished if the expert
predictions are highly correlated (e.g., Broomell
& Budescu, 2009).

We could examine such cases by defining a
new set of weights, wj

�, j � �1, 2, . . . , N�, that
correspond to the aggregate weighting of a
small group of experts. For simplicity, we will
consider the case of a small group of k-many
experts such that these k-many experts are
members of the larger crowd. Let the larger
crowd’s prediction random variable, C, be de-

fined by the weighting scheme wi, i �
�1, 2, . . . , N�. The small group weighting
scheme, wj

�, j � �1, 2, . . . , N�, will necessarily
have N – k many zero weights, corresponding to
the N – k many individuals that are not members
of the small group of experts. Let C� be the
prediction random variable defined by the
weights, wj

�, j� �1, 2, . . ., N�. Following a sim-
ilar structure to Inequality (1), we could use the
inequality, E[(C� � Y)2] � E[C � Y)2], as our
definition of “small group wisdom.” Given a set
of crowd and small group weights, one could
examine whether, and to what extent, the result-
ing inequality holds:

��X
′ w� � �y�2 	 w�′
XXw� � 2w�′�xy � ��X

′ w

� �y�2 	 w′
XXw � 2w′�xy,

where w� is the N � 1 vector of weights,
wj

�, j � �1, 2, . . . , N�, defining C�.
The weights determining the small group,

wj
�, j � �1, 2, . . . , N�, could be determined ei-

Figure 4. The proportion of individuals beat by the crowd for majority choice decision rules
ranging from 0% to 100%.
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ther deterministically or as a function of the
correlation with Y (as in the individual selection
mechanism in previous sections) or through
some other process. For example, Budescu and
Chen (2012) consider the case of weighting
only the upper 50% of judges who make a
positive contribution to the crowd (roughly the
top 50%). As in the previous section, the devi-
ation in accuracy for one set of weights over the
other could be evaluated by taking the natural
logarithm of the ratio between the left- and
right-hand sides of the above inequality. This
result allows us, a priori, to evaluate the effects
of varying the intercorrelation among the small
group DMs, the biases of their predictions, and
the number of small group members.

Discussion

We have presented a precise definition of the
“wisdom of the crowds” effect as well as a math-
ematical framework in which to evaluate it. We
define a crowd as wise if a linear combination of
member predictions is, on average, closer to the
criterion value than the prediction of a single
member who is selected according to a prespeci-
fied probability distribution. Our definition can be
simply stated as an inequality (Proposition 1).

Given the popularity and ubiquity of the
“wisdom of the crowds” (over 9 million hits on
Google) one may be tempted to downplay the
importance of this contribution. However, it is
important to realize that in the vast majority of
instances the effect is either not precisely de-
fined or not defined at all. In fact, one could say
that, like obscenity (Jacobellis v. Ohio, 1964) it
is easy to recognize wisdom of crowds when
seeing it, but rather hard to define it. In partic-
ular, the appropriate way to assess the crowd’s
performance is not clear because it is not obvi-
ous what is the proper comparative benchmark.
Larrick et al. (2012) took an important first step
in this direction by comparing the mean of the
judges with the mean judge. Our article extends
and generalizes this definition and illustrates its
application theoretically and empirically.

Under this definition, we can specify boundary
conditions on the wisdom of certain methods of
crowd aggregation. Analyzing special cases of the
framework, including different rules for combin-
ing judgments, different rules for selecting indi-
viduals against which to compare the crowd’s
judgment, cases of biased crowd members, and

correlated crowd member judgments, we confirm
that even a simple crowd average is robustly wise.
Indeed, for large groups, nearly deterministic se-
lection of a highly skilled individual DM is neces-
sary before a crowd average is unwise. Of course, as
Result 1 shows, there always exists a wise aggrega-
tion rule for every individual selection rule.

An advantage of our approach is that it can
predict when a crowd will be wise prior to any
data collection. In this manner, our framework can
guide the a priori construction of an optimal (i.e.,
maximally wise) group. Because our framework
can accommodate a wide set of constraints, for
example, various bias configurations and essen-
tially any pattern of interjudge correlations, it can
be tailored for particular problems and environ-
ments that do not fit the classic conditions for
crowd wisdom. Also, our definition of a crowd
prediction is sufficiently general and flexible to
accommodate robust aggregation measures based
on trimmed or Windsorized means (e.g., Jose &
Winkler, 2008), or medians (Hora, Fransen,
Hawkins, & Susel, 2012).

Our general results are limited to the use of the
squared error accuracy metric. Future work could
consider alternative accuracy metrics, such as av-
erage absolute accuracy. This would require addi-
tional assumptions on the prediction distributions,
but, in principle, our general approach could be
extended to any well-defined accuracy metric. In
addition, one could consider alternative general-
izations, such as comparing the crowd perfor-
mance with the best performing individual.

One perhaps surprising conclusion that emerges
is that, contrary to the extant literature that uses
the case of uncorrelated judges as the baseline
(e.g., Clemen & Winkler, 1986; Hogarth, 1978),
we find that a group is wisest, all things equal,
when it is maximally “diverse” in that its members
are as negatively correlated as possible. Though
we begin with different motivations and use dif-
ferent mathematics, this result confirms earlier
literature suggesting that diverse groups perform
better (see Hong & Page, 2004). Why is diversity
so important? A helpful analogy is to think of a
group like a financial portfolio whose members
are assets. It is useful to hedge one’s bets by
holding some assets that are negatively correlated
with the rest of the portfolio, so that there are some
positive returns when other assets perform poorly.
Similarly, we find that wise groups should include
some judges who predict better when others falter.
In large groups, there are considerable mathemat-
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ical constraints on how negatively correlated
judges can be with each other. In these cases, the
rule reduces to maximal performance when all
judges are uncorrelated, which, under normality
assumptions, implies statistical independence.

When applying our theory, it is important to
distinguish between judges being independent and
their judgments being uncorrelated. The crowd
wisdom literature stresses the importance of inde-
pendence—having the judges generate predic-
tions without consulting, conferring and commu-
nicating—but this does not imply that their
quantitative predictions will be uncorrelated. In-
deed, practically all the empirical literature shows
that experts in all domains are highly and posi-
tively correlated (Ashton, 1986; Clemen & Win-
kler, 1986; Winkler, 1971; Winkler & Poses,
1993). Broomell and Budescu (2009) describe the
sources of these interjudge correlations, such as
access to common information, intercorrelated
cues, and similar training of the experts. Broomell
and Budescu go on to illustrate how unlikely it is
to find uncorrelated judges. Our framework is well
suited to modeling such situations as it naturally
accommodates correlated judges.

In light of these constraints, the relevance of
skill-diversity trade-offs becomes apparent. Hav-
ing skilled members in the group is important, but
in the presence of some skilled members, it be-
comes more important to add members with truly
different perspectives and/or access to other
sources of information. Diversity of this sort is
highly valuable to crowd wisdom. Our framework
offers a systematic method of investigating the
precise conditions under which a crowd is no
longer wise. This allows us to answer questions of
the form: Given a specified level of intercorrela-
tions among the group members, how much mem-
ber bias can be tolerated before the group is no
longer wise (or vice versa)? A numerical example
is helpful to illustrate. Consider a group with five
unbiased members, who predictions highly inter-
correlate with one another at .7. Suppose these
five members are all skilled with a correlation of
.5 with the criterion (assume the criterion random
variable has a variance equal to 1). For this group,
adding another member with identical attributes
will create a six member group with an expected
squared error value of 22. However, adding a less
skilled member who correlates with the criterion
at.1, but who is also less correlated with the other
group members at .2, will yield a six member
group with an expected squared error value of

17.8. For this example, adding a much less skilled
member who created more diversity in the crowd
yielded a more accurate crowd than adding an-
other, much more skilled group member.

In our analyses, we found that the direction,
pattern, and magnitude of individual biases all
played a role in determining crowd wisdom. How-
ever, the overall effect of crowd wisdom was sur-
prisingly robust to individual bias overall. In other
words, unless one could identify nearly determinis-
tically the best individual, who must be quite skilled
(high correlation with the criterion), one is still
better off using an unweighted aggregate. We
confirmed these results with a reanalysis of an
empirical study (Simmons et al., 2011) in which
participants made systematically biased predictions.

Given our results, we conclude that, in general,
extraordinary evidence is needed to justify choosing
an expert’s judgment over the aggregate of a crowd.
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Appendix

Proof of Result 1

The result follows if we show that the inequality from Proposition 1 always holds when wi �
pi, ∀i � �1, 2, . . . , N�. Recall that we assume wi � 0, ∀i � �1, 2, . . . , N�, and that �i�1

N wi � 1.
More precisely, we demonstrate that the following inequality always holds:

	�
i�1

N

wi�xi � �y
2

	 �
i�1

N

�
j�1

N

wiwj�xi,xj � 2�
i�1

N

wi�xi,y 	 �y
2 � �

i�1

N

wi�(�xi � �y)
2 	 �xi

2 � 2�xi,y 	 �y
2�.

Expanding terms and simplifying gives,

	�
i�1

N

wi�xi � �y
2

	 �
i�1

N

�
j�1

N

wiwj�xi,xj � �
i�1

N

wi(�xi � �y)
2 	 �

i�1

N

wi�xi
2 ,

which holds if, and only if,

�
i�1

N

�
j�1

N

wiwj�xi,xj � �
i�1

N

wi�xi
2 � �

i�1

N

wi(�xi � �y)
2 � 	�

i�1

N

wi�xi � �y
2

.

The right-hand side of the above inequality is always non-negative by Jensen’s inequality.
Hence, we need only show that the left-hand side of the above inequality is non-positive and the
result will follow. The left-hand side of the above inequality being non-positive is equivalent to the
following,

�
i�1

N

�
j�1

N

wiwj�xi,xj � �
i�1

N

wi�xi
2 ,

which holds if, and only if,

�
∀(i,j),i�j

wiwj�xi,xj � �
i�1

N

wi(1 � wi)�xi
2 .

To prove that the above inequality always holds, consider the maximal sum on the left-hand side.

Because �XX is positive semi-definite, |�xi,xj| is bounded above by
1

2
��xi

2 	 �xj
2 � for all �i, j��

�1, 2, . . . , N�2, i � j. Substituting this upper bound for all �xi,xj terms gives the following,

1

2� �
∀(i,j),i�j

wiwj�xi
2 	 �

∀(i,j),i�j
wiwj�xj

2 �� �
i�1

N

wi(1 � wi)�xi
2 ,

which, by symmetry of �XX, equals the following,

�
∀(i,j),i�j

wiwj�xi
2 � �

i�1

N

wi(1 � wi)�xi
2 .

(Appendix continues)
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Finally, by expanding the terms on the left-hand side we will demonstrate that

�i�j wiwj�xi
2 � �i�1

N wi�1 � wi��xi
2 and that the previous inequality is, in fact, an equality.

Expanding the left-hand side, we obtain

�
∀(i,j),i�j

wiwj�xi
2 � �w1w2�x1

2 	 w1w3�x1
2 	 . . . 	 w1wN�x1

2 � 	 �w2w1�x2
2 	 w2w3�x2

2 	 . . .

	w2wN�x2
2 � 	 . . . 	 �wNw1�xN

2 	 wNw2�xN
2 	 . . .

	 wNwN�1�xN
2 �,

� �x1
2 w1	�

i�1

N

wi � w1
	 �x2
2 w2	�

i�1

N

wi � w2
	 . . . 	 �xN
2 wN	�

i�1

N

wi � wN
,

� �
i�1

N

wi(1 � wi)�xi
2 ,

and the main result follows, thus completing the proof.
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